A review of parametric modelling techniques for EEG analysis.

نویسندگان

  • J Pardey
  • S Roberts
  • L Tarassenko
چکیده

This review provides an introduction to the use of parametric modelling techniques for time series analysis, and in particular the application of autoregressive modelling to the analysis of physiological signals such as the human electroencephalogram. The concept of signal stationarity is considered and, in the light of this, both adaptive models, and non-adaptive models employing fixed or adaptive segmentation, are discussed. For non-adaptive autoregressive models, the Yule-Walker equations are derived and the popular Levinson-Durbin and Burg algorithms are introduced. The interpretation of an autoregressive model as a recursive digital filter and its use in spectral estimation are considered, and the important issues of model stability and model complexity are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Parametric and Non-parametric EEG Feature Extraction Methods in Detection of Pediatric Migraine without Aura

Background: Migraine headache without aura is the most common type of migraine especially among pediatric patients. It has always been a great challenge of migraine diagnosis using quantitative electroencephalography measurements through feature classification. It has been proven that different feature extraction and classification methods vary in terms of performance regarding detection and di...

متن کامل

Emergency department resource optimisation for improved performance: a review

Emergency departments (EDs) have been becoming increasingly congested due to the combined impacts of growing demand, access block and increased clinical capability of the EDs. This congestion has known to have adverse impacts on the performance of the healthcare services. Attempts to overcome with this challenge have focussed largely on the demand management and the application of system wide p...

متن کامل

Time-varying parametric modelling and time-dependent spectral characterisation with applications to EEG signals using multiwavelets

A new time-varying autoregressive (TVAR) modelling approach is proposed for nonstationary signal processing and analysis, with application to EEG data modelling and power spectral estimation. In the new parametric modelling framework, the time-dependent coefficients of the TVAR model are represented using a novel multi-wavelet decomposition scheme. The timevarying modelling problem is then redu...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical engineering & physics

دوره 18 1  شماره 

صفحات  -

تاریخ انتشار 1996